博客
关于我
hdu 1788 Chinese remainder theorem again(gcd)
阅读量:389 次
发布时间:2019-03-05

本文共 981 字,大约阅读时间需要 3 分钟。

Problem Description
我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的:
假设m1,m2,…,mk两两互素,则下面同余方程组:
x≡a1(mod m1)
x≡a2(mod m2)
x≡ak(mod mk)
在0<=<m1m2…mk内有唯一解。
记Mi=M/mi(1<=i<=k),因为(Mi,mi)=1,故有二个整数pi,qi满足Mipi+miqi=1,如果记ei=Mi/pi,那么会有:
ei≡0(mod mj),j!=i
ei≡1(mod mj),j=i
很显然,e1a1+e2a2+…+ekak就是方程组的一个解,这个解加减M的整数倍后就可以得到最小非负整数解。
这就是中国剩余定理及其求解过程。
现在有一个问题是这样的:
一个正整数N除以M1余(M1 - a),除以M2余(M2-a), 除以M3余(M3-a),总之, 除以MI余(MI-a),其中(a<Mi<100 i=1,2,…I),求满足条件的最小的数。

Input

输入数据包含多组测试实例,每个实例的第一行是两个整数I(1<I<10)和a,其中,I表示M的个数,a的含义如上所述,紧接着的一行是I个整数M1,M1…MI,I=0 并且a=0结束输入,不处理。

Output

对于每个测试实例,请在一行内输出满足条件的最小的数。每个实例的输出占一行。

Sample Input

2 1
2 3
0 0

Sample Output

5

Author

lcy

Source

2007省赛集训队练习赛(10)_以此感谢DOOMIII

#include
using namespace std;typedef long long ll;int main(){ int I,a; while(scanf("%d%d",&I,&a)!=EOF) { if(I==0&&a==0) break; ll ans=1,x; while(I--) { scanf("%lld",&x); ans=ans*x/__gcd(ans,x); } printf("%lld\n",ans-a); } }

转载地址:http://jlewz.baihongyu.com/

你可能感兴趣的文章
vue中处理过内存泄露处理方法
查看>>
Nginx RTMP 模块使用指南
查看>>
Nginx SSL 性能调优
查看>>
Nginx SSL私有证书自签,且反代80端口
查看>>
Nginx upstream性能优化
查看>>
Nginx 中解决跨域问题
查看>>
nginx 代理解决跨域
查看>>
Nginx 做负载均衡的几种轮询策略分析
查看>>
Nginx 入门,一篇搞定!
查看>>
Nginx 利用代理转发请求示例
查看>>
Nginx 动静分离与负载均衡的实现
查看>>
Nginx 反向代理 MinIO 及 ruoyi-vue-pro 配置 MinIO 详解
查看>>
nginx 反向代理 转发请求时,有时好有时没反应,产生原因及解决
查看>>
Nginx 反向代理+负载均衡
查看>>
Nginx 反向代理解决跨域问题
查看>>
Nginx 反向代理配置去除前缀
查看>>
nginx 后端获取真实ip
查看>>
Nginx 多端口配置和访问异常问题的排查与优化
查看>>
Nginx 如何代理转发传递真实 ip 地址?
查看>>
Nginx 学习总结(16)—— 动静分离、压缩、缓存、黑白名单、性能等内容温习
查看>>